Chapters ¥ Resources ¥ About B Positive ¥ Contact Us Q Bookmark #### My Bookmarks #### Menu: Epidemiology Diagnostic testing and interpreting ▶ Prevention Clinical assessment ▶ Treatment and management > The role of complementary medicine in hepatitis Liver disease and HCC Pregnancy, children, co-infection and Occupational health; privacy and confidentiality # Treatment of chronic hepatitis B virus infection #### **KEY POINTS** - Patients with e antigen-positive or e antigen-negative chronic hepatitis B (previously referred to as immune clearance or immune escape phases) should be considered for antiviral therapy. Treatment is indicated for those with any of the following: high hepatitis B virus (HBV) DNA; elevated alanine aminotransferase levels or evidence of inflammation; fibrosis on liver biopsy or marked fibrosis on - Fibroscanes. • All patients with cirrhosis are candidates for treatment. • Patient and doctor attention to the issue of adherence is critical for the success of therapy. • Entecavir and tenofovir are first-line treatment options for oral antiviral therapy. - · Pegylated interferon is an alternative option in some patients #### Goals of therapy The goal of therapy is to prevent, halt or even reverse the progression of liver injury towards cirrhosis, liver decomposition cancer, which are the major causes of death in older patients with hepatitis B virus (HBV) infection (1). This is achieved by controlling viral replication, either with direct acting antiviral therapy or indirectly using interferon (IFN) to stimulate immune control. Control of viral replication reverses decompensated liver disease and reduces the risk of hepatocellular cancer (HCC) (2.3). The challenge for the clinician is to determine the phase of infection and anticipated natural history for an individual patient, so that therapy can be tailored to those likely to benefit. The terminology used to describe the phases of hepatitis B infection has varied between countries and over time (further detailed in Natural History of hepatitis B virus infection) (4). In communicating information to patients about their treatment choices for hepatitis B, language, literacy and culture are important considerations. Patient resources are available to aid communication; for example, the Hepatitis B story and the Hep B Story App (https://o Patient resources. Primary goals of treatment are to improve both quality of life and survival of people with HBV infection via: - Achieve HBeAg loss in HBe Ag-positive patients Achieve sustained suppression of HBV viral replication - · Achieve HBsAg loss with or without anti HBs seroconversion . Reduce risk of progression to cirrhosis and hepatocellular carcinoma The other relevant goals of therapy are the prevention of hepatitis B reactivation, vertical transmission, prevention and treatment of extrahepatic manifestations, regression of fibrosis or cirrhosis in patients with established liver disease, reduction of risk of HCC recurrence after potential curative therapies for patients with HCC, and the prevention of risk of liver failure in acute hepatitis B (4). # Indications for antiviral therapy The decision to commence antiviral therapy is based on a number of factors, including the patient's age, serum HBV DNA levels extent of hepatic fibrosis, ALT levels, hepatitis B e antigen (HBeAg) status and the risk of HCC. Other factors to consider are family history of cirrhosis or HCC and extrahepatic manifestations (4). Barriers to treatment adherence need to be considered (Table 7.1), because liver damage can be worsened by non-adherence. Many guidelines are available on this subject with some inconsistencies in recommendations (5). A recent review summarises the variance in international consensus guidelines for treatment initiation and the art of decision making in the clinic (5). Previously, a liver biopsy demonstrating necroinflammation consistent with chronic hepatitis B (CHB) was a necessary prerequisite for reimbursed access to antiviral therapy in Australia. This requirement has now been removed although certain condition are still required to be met (relating to ALT and HBV DNA levels) before antiviral therapy can be prescribed in the Pharmaceutical Benefits Scheme (PBS). A liver biopsy is no longer mandatory for reimbursement; however, in some settings, it may still have a role in decision making. Noninvasive techniques to indirectly measure the extent of liver fibrosis should be used to assist decision making in preference to liver biopsy (6.7) (see: Clinical assessment of patients with hepatitis B virus infection) tion 6 There are two main classes of therapy for - direct antiviral agents, which inhibit the function of the viral polymerase and thus prevent viral replication - · the IFNs, which are synthetic cytokines that act via multiple different intracellular biological pathways to eradicate viral infection | Table 7.1 Potential barriers to hepatitis B virus treatment adherence (8-10) | | | | | | | |--|---|--|--|--|--|--| | The patient | Understanding of disease or reason for antiviral treatment. Cultural health beliefs, literacy or health literacy, language barriers. Competing priorities (e.g., health, employment and family issues). Other social issues (e.g. substance use, powerly and housing, stigmatisation). Distance, time and cost to attend appointments (including lost work time). | | | | | | | Doctor-
patient interaction | Poor communication, including inadequate use of culturally appropriate resources or interpretation services (or both) when needed. Failure to appreciate barriers to adherence, and to employ strategies and appropriate one-to-one education. | | | | | | | Health system | Geographical and system barriers to treatment access, including specialist availability, local availability of antiviral therapy for ongoing supply, hospital outpatient waiting lists and outpatient appointment waiting lines are partial residues of Disconsidering of condition. | | | | | | Nature of disease Hepatitis B is asymptomatic. People feel well, so may discontinue treatment. Long-term therapy leads to treatment fatigue. In practical terms, once the decision to commence antiviral therapy has been made, the physician should choose one of the three agents that are currently approved by the Australian Government's Therapeutic Goods Administration (TGA) and reimbursed under the PBS for the initial treatment of CHB in Australia. These agents are pegylated IFN (PEG-IFN) alfa-2a (180 µg/week), tenofovir (300 mg/day) and entecavir (0.5 mg/day). Several other oral agents – including lamivudine, a registered for the treatment of CHB but are not preferred due to inferior potency or inferior barrier to resistance. When choosing the most appropriate anti-HBV therapy, it is important to consider the advantages and disadvantages of each treatment option. The choice of therapy must take into account the drug's efficacy, safety, chance of achieving desired endpoints, anticipated duration of therapy and the likelihood of developing resistance. PBS Streamlined codes: HBV Section 100 community prescribers accredited to prescribe by their state or territory can use streamlined codes. Streamlined codes may be updated from time to time, see www.pbs.gov.au/info/b For information on general practitioner and nurse practitioner prescribing see www.ashm.org.au | Table 7.2 Patients in whom treatment is indicated | | | | | | | | |---|---|--|---|---|--|--|--| | HBeAg
status | Fibrosis or cirrhosis | HBV DNA levels | ALT | Other considerations | | | | | Positive
or
negative | Cirrhosis
(compensated or
decompensated)* | Any detectable level | Any level | | | | | | Positive or negative | None | > 20,000 IU/mL | > 2 x ULN ^ | ALT repeated at least 1 month between observations and other causes excluded | | | | | Positive or negative | AND/OR moderate
fibrosis ≥ F2β | > 2000 IU/mL | > ULN | To be covered by PBS, HBeAg-positive individuals must have HBV VL > 20,000 IU/mL however updated international guidelines now suggest > 2000 IU/mL irrespective of e status | | | | | Positive or negative | Cirrhosis ^Ω | Any detectable level | Any | Failed HBV therapy for tenofovir Failed lamivudine therapy for entecavir | | | | | Positive or negative | No cirrhosis | Repeatedly elevated HBV DNA levels 1 log >
the nadir value or failure to achieve a 1 log
reduction in HBV DNA within 3 months while
on previous HBV therapy (except in patient
with poor adherence to treatment) | > ULN while
on HBV
therapy of ≥ 6
months | Failed HBV therapy for tenofovir Failed
lamivudine therapy for entecavir | | | | *cirrhosis diagnosed by liver biopsy, or patients with chronic HBV infection either with normal ALT and liver stiffness > 9 kPa, or with ^ ULN for females is 19 IU/L and for males is 30 IU/L $\beta \,$ assessed by liver biopsy or transient elastography > 7 kPa $^{\Omega} \text{ all patients with Child class B or C cirrhosis (ascites, variceal bleeding, encephalopathy, albumin < 30 g/L, bilirubin > 30 \mu mol/L)}$ should have their treatment discussed with a transplant unit before therapy is started ALT: alanine aminotransferase; CHB: chronic hepatitis B; HBeAg: hepatitis B e antigen; HBV: hepatitis B virus; IU: international unit; PBS: Pharmaceutical Benefits Scheme; ULN: upper limit of normal; VL; viral load $Older\ patients\ with\ significant\ viraemia\ but\ only\ mildly\ elevated\ ALT\ levels\ may\ have\ significant\ liver\ injury\ from\ a\ prior\ phase\ of\ prior\ phase\ of\ prior\ phase\ of\ prior\ phase\ of\ prior\ phase\ phase\ prior\ phase\ pha$ CHB (11). A liver biopsy or other assessment of liver fibrosis (e.g. transient elastography) will assist in determining the need for therapy. Patients with advanced fibrosis or cirrhosis, irrespective of ALT (e.g. a Scheuer score of ≥ 3 or Metavir score of ≥ 72 on biopsy, a FibroScan® of > -9 kPa with normal ALT or > 12 kPa with elevated ALT but < 5x ULN (12), or as assessed by other noninvasive tests) should be considered for antiviral therapy (see: Managing patients with advanced liver disease). # Who should be considered for therapy? # Hepatitis B e antigen (HBeAg)-positive patients HBeAg-positive patients who are in the chronic hepatitis B phase (Phase 2 otherwise previously referred to as 'immune clearance' phase) should be considered for antiviral therapy if they also have elevated serum ALT (i.e. > 30 IU/L for males and >19 IU/L for females) that is persistent (i.e. 3-6 months without an alternative cause), and a serum HBV DNA level of greater than 20,000 IU/mL and/or the presence of moderate fibrosis or F2 and above (4). Some international guidelines recommend treatment initiation at a lower threshold of 2,000 IU/ml but this is not currently supported within the PBS. In contrast, those with a persistently normal ALT level (i.e. no evidence of hepatitis) require regular monitoring (see: Clinical assessment of patients with hepatitis B virus infection) but treatment is usually not of benefit. The regular monitoring ensures any move to a more active phase of infection (HBeAg positive chronic hepatitis or previously referred to as 'immune clearance' phase) is identified in a timely fashion to allow treatment to be considered. Click to open GESA recommendations nsus Recommendation 7 GESA Consensus Recommendation # Hepatitis B e antigen (HBeAg)-negative patients HBeAg-negative patients who are in the chronic hepatitis B phase (Phase 4 otherwise previously referred to as 'immune escape' phase), with ALT levels and serum HBV DNA levels lower than in patients with HBeAg-positive CHB. Nevertheless, patients with eAgnegative chronic hepatitis B are at greater risk of liver injury and worse outcomes than younger patients with HBeAg-positive disease. It is therefore recommended that the threshold serum HBV DNA level for initiating antiviral therapy should be 2000 IU/mL, in combination with either an elevated ALT or evidence of accumulated significant liver damage (e.g., fibrosis, or moderate or severe inflammation, or both) (13). In general, other recommendations for therapy in HBeAg-negative patients are similar to those with HBeAg-positive disease. | Table 7.3 Patients in whom treatment may be considered. These indications are not currently covered under the PBS but are included in the most up-to-date international guidelines (-:) | | | | | | | | | |---|-----------------------|-------------------|--------|--|--|--|--|--| | HBeAg status | Fibrosis or cirrhosis | HBV DNA levels | ALT | Other factors | | | | | | Positive | None | > 1,000,000 IU/mL | Normal | Age > 30 years | | | | | | Positive or negative | Any | Any | Any | Family history of HCC
or fibrosis; or presence
of extrahepatic
manifestations#
regardless of family
history | | | | | $^{^{\#}}$ Extrahepatic manifestations such as glomerulonephritis and vasculitis associated with hepatitis B # HCC: hepatocellular carcinoma No treatment is required for patients with HBeAg-positive or negative disease who have HBV DNA levels < 2000 IU/mL, normal ALT, Metavir score F0 to F1, under 35 years of age and have no family history of cirrhosis or HCC. In these patients, ALT should be monitored every 6-12 months, and HBV DNA as well as fibrosis assessment should be undertaken every year Click to open GESA recommendation #### SESA Consensus Recommendation #### Patients with cirrhosis People living with hepatitis B and cirrhosis are at increased risk of hepatic decompensation and developing HCC. Treatment with antiviral therapy reduces these risks and all individuals with cirrhosis should be offered treatment. Click to open GESA recommendation GESA Consensus Recommendation 10 #### Women of child-bearing age Women with CHB interested in starting a family should consider the safety profile of various treatment options, and restricted access to treatment under PBS Section 100 criteria. Management decisions for patients initiated on treatment who later fall pregnant must be individualised. The abundant safety data for lamivudine and tenofovir in HIV-treated patients may facilitate a discussion on the risks and benefits of treatment; this discussion should also include the possibility of a flare of disease activity during pregnancy, and the likelihood of vertical transmission despite immunoprophylaxis in pregnant women with high viral loads. A recent study showed that tenofovir given to a cohort of pregnant women with a HBV viral load > 200,000 IU/mL at 28 weeks gestation showed a significantly lower mother-to-child transmission in the treatment group compared to the control group (14). Initiation of tenofovir is now recommended in this situation. There are limited data on the safety of entecavir longenancy, and its use is not recommended. Initiating a patient with PEG-IFN before starting family planning could be an alternative option because this treatment is limited to a defined duration. More detailed advice on management of hepatitis B in pregnancy is given in Managing heputits B virus infection in pregnancy and children. # Therapeutic options There are two main treatment options for treatment. The first-line treatments are nucleoside analogues (NAs) with a high barrier to resistance: tenofovir and entecavir. An alternative option in highly selected patients is PEG-IFN. #### Interferen The use of conventional IFN has been supplanted by the use of PEG-IFN, which has the advantage of weekly dosing and (probably) of improved efficacy. The recommended standard dosing of PEG-IFN alfa-Za is 180 µg given weekly for 48 weeks. The side-effects are similar to conventional IFN (leg, Influenza-like symptoms, fatigue, leukopenja, irritability, sleep disturbance and depression), but are neither universal nor easy to predict. In HBeAg-positive patients, HBe seroconversion occurred in 32% of patients up to 6 months after the end of treatment. Baseline predictors of response include genotype A infection, lower HBV DNA (20,000.000 IU/mL (7.3 log 10/IU/mL)), and higher ATI levels (? 2 × U.Dh.). A small but significant proportion of patients treated with IFN also achieve hepatitis B surface antigen (HBsAg) seroconversion. This is seen particularly in genotype A and is uncommon in Asian patients. Genotype D HBV patients have the lowest response rates to PEG-IFN therapy. Given the expense and side-effect profile of IFINs, it would be helpful to identify onn-responders early, although rules for stopping IFN have not been clearly established. Failure to suppress the virus by 6 months is usually indicative of non-response, and treatment may be discontinued. A change in HBsAg titres has been suggested as a useful predictor of response, but the test is not widely available in Australia, and its applicability across different genotypes requires further evaluation (15.16). PEG-IFN also has a role in the treatment of HBeAg-negative patients. Sustained control of viral replication (< 2000 IU/mL) is seen in 20% of patients after completion of therapy (17). Control of viral loads to these levels should reduce progression to clinically significant liver disease. The main advantage of PEG-IFN is the fixed duration of therapy (which is particularly attractive to younger patients), and the chance for HBS4g seroconversion. The main disadvantage is the side-effect profile. Flares of viral hepatitis resulting from enhanced immune clearance can be seen in up to 18% of patients and can be severe in those with advanced underlying liver disease. IFNs are contraindicated in patients with decompensated cirrhosis. Interferon based regimens are not the best choice for patients with cirrhosis and are contraindicated in patients with decompensated cirrhosis. PEG-IFN is generally contraindicated in pregnancy and breastfeeding (see: Managing hepatitis B virus infection in pregnancy and children). Click to open GESA recommendation GESA Consensus Recommendation 12 # Treatment options - Direct-acting antiviral agents can be chosen according to their potency, their side-effects and the chance of resistance. For treatment-naive patients, entecavir or tenofovir is the best currently available antiviral therapy. For lamivudine-resistant patients, tenofovir added to lamivudine therapy is most effective. - Pegylated interferon has a different mechanism but comparable efficacy to antiviral agents, with the disadvantage of increased side-effects and the advantage of a shorter, fixed-duration therapy without drug resistance. Interferon is not the best choice in natients with cirrhosis. - Therapy should be individualised. # Antiviral therapy Long-lasting, treatment-maintained suppression of HBV DNA without resistance is achievable in most patients with entecavir or tenofovir. A sustained off-treatment response is uncommon, and long-term therapy should be anticipated (18), particularly in patients in the HBeAg-negative phase of infection. # Entecavir Entecavir, a purine-derived nucleoside analogue, is a highly effective inhibitor of viral replication. Long-term (at least 3 years) entecavir therapy appears to result in the reversal of fibrosis and cirrhosis, and continued improvement in liver histology (19). It has few side-effects, the most common being headanch (2-4%) and fatigue (1-3%). The rate of HBeAg clearance with entecavir is similar to that seen with other antiviral agents. Entecavir is recommended at a dose of 0.5 mg for treatment-naive patients. HBV drug resistance in that clinical scenario is extremely uncommon; it was reported in only 1.2% of cases after 5 years of study. Entecavir is not the best choice of therapy for patients with established lamivudine resistance. Even with a higher bodge (1.0 mg daily), 50% of such patients develop entecavir resistance in 5 years. This is due to partial cross-resistance between lamivudine and entecavir. Entecavir is contraindicated in pregnancy and thus is not a good choice in young women who might be planning to or may accidentally become pregnant. Entecavir absorption is affected by food, and it should be taken on an empty stomach, 2 hours before or after a meal. This food requirement should be discussed with the patient before therapy is started. # Tenofovir disproxil fumarate Tenofovir disoproxil fumarate (TOF) is an acyclic adenine nucleotide with potent activity against HBV. It has been used extensively in the treatment of human immunodeficiency virus (HIV) infection. The recommended dose of tenofovir is 300 mg daily. No patient included in the initial registration trial has developed tenofovir resistance after 8 years of follow up (20), Nephrotoxicity, including Fanconi syndrome, has been reported in patients receiving tenofovir although it is much less common than in the setting of HIV (19,21). The risk of renal toxicity is low; however, on treatment, monitoring of renal function (estimated glomerular filtration rate, eGFR) and serum phosphate concentration is important to avoid progressive renal injury. Tenofovir is the agent of choice for patients with lamivudine resistance, because lamivudine and tenofovir have different mutational pathways to resistance. Although adefovir and tenofovir have similar pathways to resistance, the latter is highly effective in patients with prior adefovir resistance, with 60-90% of patients receiving tenofovir having undetectable HBV DNA after 1 year of therapy (22). # Tenofovir alafenamide (Approved by Pharmaceutical Benefits Advisory Committee March 2017 but not yet available through the PBS) To a facility of the transfer of the second and the second and the second secon Tention and an analysis of the production and the production are strongly and the production of the production are still emerging. The registration trials demonstrate non-inferiority of tention are still emerging. The registration trials demonstrate non-inferiority of tention are still emerging. The registration trials demonstrate non-inferiority of tention are still emerging. The registration trials demonstrate non-inferiority of tention alafenamide to tentionfor into proving illumarate in both eAgo positive and eAgo-regative chronic heapatitis B at 48 weeks (23.24), and the production are still emerging. The registration trials demonstrate non-inferiority of tention alafenamide at 50 weeks. Those taking tentionir alafenamide experienced smaller changes in bone mineral density and smaller declines in eGFR which were statistically significant at both weeks 48 and 96 (25). In a group of 540 people switched to open label tention/orir alafenamide at the end of the study statistically significant improvements in bone mineral density and creatinine clearance were switching 24 weeks (26). It is anticipated that tenofovir alafenamide will become an alternative option to tenofovir disoproxil fumarate through the PBS. Longer-term data are needed to establish the clinical significance of switching to tenofovir alafenamide from tenofovir disoproxil fumarate in heading the production and the production of the production and the production of the production and the production and the production are successful to the production of the production and productin #### Other agents and combinations Lamivudine, adefovir and telbivudine are no longer recommended as first-line therapies in Australia; however, they may still be widely prescribed in lower-middle income countries. Lamivudine was the first antiviral agent made available for the treatment of CHB in Australia. It is an oral nucleoside analogue, well tolerated and without significant side-effects. Unfortunately prolonged therapy with lamivudine resulted in high rates of viral resistance occurring in 14–32% of paleints after 1 year of therapy, and 60–70% of paleints after 5 years of therapy (27). Adefovir is an acyclic nucleotide analogue and an effective antiviral agent. The recommended dose of 10 mg restricted adefovir's antiviral potency, but nephrotoxicity at higher doses was a limiting factor. In Australia, as guided by PBS reimbursements, its role was limited for the treatment of patients with laminudine resistance. Initially adefourive mas used as monotherapy in patients with laminudine resistance, but the development of resistance to adefovir was common in this situation and it quickly became apparent that combination therapy provided much better control of viral replication (28). Adefovir has largely been replaced by tenofovir due to the latter's superior antiviral activity. Telbivudine is also a highly effective antiviral agent, but its utility is limited by the rather rapid emergence of resistance variants of HBV (30% in 3 years). A specific side-effect of telbivudine is myopathy, and patients on treatment should be monitored for muscle symptoms. Telbivudine has a pregnancy category B listing. For patients naive to therapy, it might be predicted that dual direct-acting antiviral therapy might be superior to single agent therapy (as is the case for HiV), although to date no benefit has been demonstrated (29). Combining IFN with direct-acting antiviral therapy has also not been shown to be superior although studies in this area are ongoing. In summary, both nucleos(t)ide analogues and PEG-IFN can be prescribed as first-line treatment options for CHB. However, PEG-IFN should only be considered for patients with a high chance of response based on pre-treatment and on-treatment factors. Click to open GESA recommendation GESA Consensus Recommendation 11 In patients on antiviral agents, a rising ALT or HBV DNA level may indicate viral resistance or non-adherence. In patients on older antiviral agents, a switch to one of the new agents must be undertaken. #### Goals of monitoring in patients who are on treatment - · Monitor treatment response and adherence - Detect adverse effects of treatment - · Identify emergence of resistance - Identify and treat progression of liver disease #### Monitoring patients on antiviral therapy While on therapy, patients should be monitored regularly to document virological response to treatment, detect adverse events early in their evolution, identify the emergence of viral resistance and encourage adherence. In patients on direct-acting antiviral therapies, baseline assessment for proteiluria, ecFBA and (if tenofovir therapy is planned) fasting serum phosphate level. On-treatment monitoring is recommended 3 monthly for the first year. Full blood count, liver and renal function (and fasting serum phosphate for patients on tenofovir) and HBV serology (for patients who are HBeAg positive) and HBV DNA are recommended. Dose adjustments may be required, depending on renal dysfunction. After the first year, or when complete virological control has been achieved, 6-monthly monitoring is reasonable with entecavir and tenofovir, given their low rates of drug resistance in pivotal studies and in the clinical situation (30). One risk of such infrequent monitoring is reduced adherence to therapy. Shared attention to the issue of adherence by patient, specialist and general practitioner is critical for the success of therapy. Click to open GESA recommendation GESA Consensus Recommendation 13 # Monitoring on treatment Regular monitoring is required to identify virological response, resistance and hepatitis flares, and to encourage adherence # Pegylated interferon Frequent monitoring until treatment dose stabilised, then every 4-6 weeks. Particular attention: FBC, white cell count differential and platelet count at each visit; adjust dosing as necessary # Direct antiviral theranie 3 monthly for the first year, then 6 monthly. FBC, liver and renal function (and fasting serum phosphate for those on TDF) and HBV serology (for HBeAg positive) and HBV DNA is recommended FBC: full blood count; HBeAg: hepatitis B e antigen; HBV: hepatitis B virus; TDF: tenofovi # Treatment-related side-effects The safety profile of oral agents is similar to that of placebo. As mentioned previously, entecavir is well tolerated, with negligible side-effects. There have been reports of nephrotoxicity and Fanconi syndrome developing in patients on tenofovir disoproxil fumarate therapy, although the risk of renal injury is low and can be managed with routine monitoring (as described) plus dose adjustments when required. Tenofovir alafenamide may become the better option for those with renal impairment and other high-risk natients when it becomes available through the PBS. In contrast, IFNs have many side-effects. Anecdotally, IFN seems better tolerated in patients receiving treatment for HBV compared to those with hepatitis C virus infection. Despite this observation, patients taking IFN may experience many different side-effects that require careful management to achieve a safe and effective outcome. Treatment is usually supportive, and symptom based (31). # End point of therapy The ultimate goal is viral eradication, reflected by sustained off-therapy HBsAg loss and development of protective anti-HBs, but this objective is rarely achieved. Instead, for most of those affected, the aim is blochemical control (i.e. normalisation of ALT) and virological control (i.e. suppression to < 2000 IU/mL for IFN treatment, and to undetectable for direct-acting antiviral therapy). For those in the HBsAg, positive phase of infection. HBsAg loss and development of anti-HBe (HBsAg seroconversion) heralds the possibility of sustained off-therapy blochemical and virological control. After a period of consolidation, a trial off therapy is undertaken to determine whether blochemical and virological control will be sustained in that individual. Failure may be due to reversion to HBsAg-positive or anti-HBe-negative state off therapy, or due to the emergence of HBsAg-negative chronic hepatitis (previously referred to as 'immune escape' phase) (32,33). In patients in the HBeAg-negative chronic hepatitis phase of infection, blochemical and virological control is usually only achieved by long-term therapy, although IFN sometimes induces sustained off-therapy responses. # Stopping oral antiviral treatment Anti-viral therapy can be discontinued if a non-cirrhotic individual loses HBsAg irrespective of the development of anti-HBs. In non-cirrhotic HBeAg-positive patients, who have seroconverted to HBeAb positive and had a HBV DNA VL < 20 IU/mL over a sustained period, stopping therapy can be considered. Most guidelines recommend a 6-12 month consolidation period before stopping therapy. However, a proportion of patients will relapse after treatment is stopped making close monitoring and recommencement of treatment if needed essential. At 3 years post cessation of therapy approximately 50% of such patients will meet criteria for retreatment (34). In HBeAg-negative patients, the risk of virological relapse after stopping therapy is high, and patients usually continue lifelong therapy unless they undergo loss of HBSAg (35). The recent FINITE study investigated the possibility of stopping antiviral therapy in non-cirrhotic people with HBeAg-negative chronic hepatitis who had received tenofovir disportant immarate for more than 4 years with a supersead viral load for more than 3.5 years. Of those randomised to stop therapy, 62% remained off therapy at week 144. There were no unexpected safety issues identified with stopping therapy, (36). This trial only included 42 people however it provides support for consideration of this approach in the specific group described above where close off-treatment monitoring can be guaranteed. Click to open GESA recommendation **GESA Consensus Recommendation 14** #### New emerging therapies for hepatitis B Unfortunately, although CHB can be controlled and the risk of liver cirrhosis and liver cancer reduced, currently there is no cure for hepatitis B. However, there is a considerable amount of research effort being linvested into moving towards a cure for hepatitis B. It is likely that, as for other chronic viral infections, combination therapy targeting multiple different sites will be needed. New drug classes that act directly on HBV at various points in the lifetycle that are being studied in phase 1or 2 studies include: entry inhibitors which competitively bind to the NTCP receptor preventing HBV entry, RNA silencers which are small interfering RNAs directed at HBV RNA sequences: capsid inhibitors which at through a bear erant core protein processing and hence disrupt capsid assembly; and HBSAg release inhibitors. Targeting cccDNA would seem necessary to truly cure hepatitis B. Although there are no therapeutic drugs currently available that target cccDNA directly there is preclinical work occurring in this area investigating the CRISP/CasS system as a platform to mutate or inactivate cccDNA (37). Drug classes focused on modulating the host immune response that are under investigation include: toll like receptors, check point inhibitors and therapeutic vaccines, it is likely that a combination of therapies will be needed to enable chronic HBV to be cured and that it will need to be individualised to each patient, stage of liver disease and genotype of the virus. It is crucial that while new drugs and new approaches are awaited, all patients with CHB are effectively managed, and treated as recommended by evidence-based guidelines, to minimise morbidity and mortality from liver failure and HCC. #### Click here to view The role of complementary medicine in hepatitis B #### References - Szpakowski JL, Tucker LY. Causes of death in patients with hepatitis B: a natural history cohort study in the United States. Hepatology 2013;58:21-30. - Llaw YF. Reduction of cirrhosis and hepatocellular carcinoma with antiviral therapy in chronic hepatitis B. Hepatology 2013;58:1856. - Hosaka T, Suzuki F, Kobayashi M, Seko Y, Kawamura Y, Sezaki H, et al. Long-term entecavir treatment reduces hepatocellular carcinoma incidence in patients with hepatitis B virus infection. Hepatology 2013;58:98-107. - European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. | Hepatol 2017;67:370-98. - 5. Yapali S, Talaat N, Lok AS. Management of hepatitis B: our practice and how it relates to the guidelines. Clin Gastroenterol Hepatol 2014;12:16-26. - Scott DR, Levy MT. Liver transient elastography (Fibroscan): a place in the management algorithms of chronic viral hepatitis. Antivir Ther 2010;15:1-11. - Chan HL, Wong GL, Choi PC, Chan AW, Chim AM, Yiu KK, et al. Alanine aminotransferase-based algorithms of liver stiffness measurement by transient elastography (Fibroscan) for liver fibrosis in chronic hepatitis B. J Viral Hepat 2009;16:36-44. - $8.\,Benson\,J.\,Concordance -- an alternative\,term\,to\,'compliance'\,in\,the\,Aboriginal\,population.\,Aust\,Fam\,Physician\,2005; 34:831-5.$ - 9. Hajarizadeh B, Wallace J, Richmond J, Ngo N, Enright C. Hepatitis B knowledge and associated factors among people with chronic hepatitis B. Aust N Z J Public Health 2015;39:563-8. - 10. Davies J, Bukulatjpi S, Sharma S, Davis J, Johnston V. "Only your blood can tell the story" a qualitative research study using semistructured interviews to explore the hepatitis B related knowledge, perceptions and experiences of remote dwelling Indigenous Australians and their health care providers in porthern Australia BMC Public Health 2014;14:1233. - Australians and their health care providers in northern Australia. BMC Public Health 2014;14:1233. 11. Tsang PS, Trinh H, Garcia RT, Phan JT, Ha NB, Nguyen K, et al. Significant prevalence of histologic disease in patients with chronic heaptitis R and mildide Jeptacted serum aliania eminortransferase levels. Clin Gastroenterol Heaptol 2008;6:569-74. - European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado. EASL-ALEH Clinical Practice Guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J Hepatol 2015;63:237-64. - 13. Papatheodoridis GV. Why do I treat HBeAg-negative chronic hepatitis B patients with nucleos(t)ide analogues? Liver Int 2013;33 - 14. Pan CQ, Duan Z, Dai E, Zhang S, Han G, Wang Y, et al. Tenofovir to prevent hepatitis B transmission in mothers with high viral - load. N Engl J Med 2016;374;2324-34. 15. Sonneveld MJ, Hansen BE, Piratvisuth T, Jia JD, Zeuzem S, Gane E, et al. Response-guided peginterferon therapy in hepatitis B e antigen-positive chronic hepatitis B using serum hepatitis B surface antigen levels. Hepatology 2013;58:872-80. - Lampertico P, Vigano M, Colombo M. Why do I treat HBeAg-negative chronic hepatitis B patients with pegylated interferon? Liver Int 2013;33 Suppl 1:157-63. - 17. Buster EH, Schalm SW, Janssen HL. Peginterferon for the treatment of chronic hepatitis B in the era of nucleos(t)ide analogues. - Best Pract Res Clin Gastroenterol 2008;22:1093-108. 18. Lampertico P, Llaw YF. New perspectives in the therapy of chronic hepatitis B. Gut 2012;61 Suppl 1:118-24. - Gracey DM, Snelling P, McKenzie P, Strasser SI. Tenofovir-associated Fanconi syndrome in patients with chronic hepatitis B monoinfection. Antivir Ther 2013:18:945-8. - 20. Liu Y, Corsa AC, Buti M, Cathcart AL, Flaherty JF, Miller MD, et al. No detectable resistance to tenofovir disoproxil furmarate in HBeAg+ and HBeAg+ patients with chronic hepatitis B after 9 years of treatment. J Viral Hepat 2017;24:68-74. 21. Dauchy FA, Lawson-Ayay S, de La Faille R, Bonnet F, Rigothier C, Mehsen N, et al. Increased risk of abnormal proximal renal - tubular function with HIV infection and antiretroviral therapy. Kidney Int 2011:80:302-9. - 22. Svarovskaia ES, Curtis M, Zhu Y, Borroto-Esoda K, Miller MD, Berg T, et al. Hepatitis B virus wild-type and rtN236T populations - show similar early HBV DNA decline in adefovir refractory patients on a tenofovir-based regimen. J Viral Hepat 2013;20:131-40. 23. But M. Gane E, Seto WK. Chan HL. Chuang WL. Stepanova T. et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of patients with HBeAg-negative chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet Gastroenterol Hepatol 2016;1:196-206. - 24. Chan HL, Fung S, Seto WK. Chuang WL. Chen CY, Kim HJ, et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate for the treatment of HBeAg-positive chronic hepatitis B virus infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet Gastroenterol Hepatol 2016;1:185-95. - Aganwal K, Fung S, Seto WK, Lim YS, Gane E, Janssen HL. et al. A phase 3 study comparing tenofovir alafenamide (TAF) to tenofovir disoproxil fumarate (TDF) in patients with HBeAg-positive, chronic hepatitis B (CHB): efficacy and safety results at week 96. I Hepatol 2017;66:5426. - 26. Chan HL, Fung S, Seto WK, Gane E, Flaherty JF, Suri V, et al. Improved bone and renal safety of switching from tenofovir disproxil fumerate to tenofovir alafenamide: preliminary results from 2 phase 3 studies in HBeAg positive and HBeAg-negative patients with thronic hepatities I, Hepatol 2017;66:525. - 27. Zoulim F, Locarnini S. Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology 2009;137:1593-608. - 28 Lamnertico P. Vigano M. Manenti F. Javarone M. Lunghi G. Colombo MI. Adefovir ranidly sunnresses henatitis R in HReA - negative patients developing genotypic resistance to lamivudine. Hepatology 2005;42:1414-9. 29. Lok AS, Trinh H, Carosi G, Akarca US, Gadano A, Habersetzer F, et al. Efficacy of entecavir with or without tenofovir disoproxil fumarate for nucleos(t)ide-naive patients with chronic hepatitis B. Gastroenterology 2012;143:619-28. 30. Kitrinos KM, Corsa A, Liu Y, Flaherty J, Snow-Lampart A, Marcellin P, et al. No detectable resistance to tenofovir disoproxil - fumarate after 6 years of therapy in patients with chronic hepatitis B. Hepatology 2014;59:434-42. 31. Slim J. Afridi MS. Managing adverse effects of interferon-alfa and ribavirin in combination therapy for HCV. Infect Dis Clin North - Am 2012;26:917-29. - 32. Song BC, Suh DJ, Lee HC, Chung YH, Lee YS. Hepatitis B e antigen seroconversion after lamivudine therapy is not durable in patients with chronic hepatitis B in Korea. Hepatology 2000;32: 803-6. - 33. Song BC, Cui XJ, Shin JW, Park NH, Cho YK. Song HJ, et al. Response to adefovir depends on mutation patterns in precore region, basal core promoter and reverse transcriptase, and on-treatment responses in Lamivudine-resistant chronic hepatitis B - patients. Intervirology 2010;53:203-10. 34. Papatheodoridis G, Vlachogiannakos I, Cholongitas E, Wursthorn K, Thomadakis C, Touloumi G, et al. Discontinuation of oral - antivirals in chronic hepatitis B: a systematic review. Hepatology 2016;63:1481-92. 35. Hadziyannis SJ, Sevastianos V. Rapti I, Vassilopoulos D, Hadziyannis E. Sustained responses and loss of HBsAg in HBeAg-negative - patients with chronic hepatitis B who stop long-term treatment with adefovir. Gastroenterology 2012;143:629-36. 36. Berg T, Simon KG, Mauss S, Schott E, Heyne R, Klass DM, et al. Long-term response after stopping tenofovir disoproxil fumarate - in non-cirrhotic HBeAg-negative patients FINITE study. J Hepatol 2017;67:918-24. 37. Peters MG, Locarnini S. New direct-acting antiviral agents and immunomodulators for hepatitis B virus infection. Gastroenterol Hepatol 2017;13:348-56 #### Authors #### Review 2022 Sam Elliott - General Practitioner, Riverside Family Medical Practice, St Marys SA #### Authors update 2018 Jane Davies - Department of Infectious Diseases, Royal Darwin Hospital and Department of Global Health, Menzies School of Health Research, Darwin NT Marilou Capati - Top End Medical Centre, Darwin NT # Acknowledgement $Miriam\ T\ Levy - Department\ of\ Medicine,\ The\ University\ of\ New\ South\ Wales,\ South\ Western\ Sydney\ Clinical\ School,\ and\ Liverpool\ Sydney\ Clinical\ School,\ and\ Liverpool\ Sydney\ Clinical\ School\ Clinical\ School\ Clinical\ Sydney\ Clinical\ School\ Sc$ Hospital, Liverpool, NSW. Co-authored the original version of this chapter (2012 edition). Darrell HG Crawford - School of Medicine, University of Queensland, Greenslopes Private Hospital, and Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD. . Co-authored the original version of this chapter (2012 edition). Contact Us Feedback Privacy Policy Patient Resources Health Professional Resources